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ABSTRACT 

A novel application for Autonomous Underwater Vehicles (AUVs) is considered here: a 

robotic diver assistant that enables close-quarters robotic operations with human divers. 

A robotic diver assistant has the potential to improve the efficiency, effectiveness and 

safety of diver operations. The robot diver assistant must share the operating environment 

with human divers, navigate relative to the environment to reach a specified site location 

(along with moving divers), and then maneuver among the mostly static divers as they 

perform their tasks on location. The robot operates in three unique scenarios: station-

keeping, diver-following (shadowing), and diver-leading (vectoring). Various strategies 

for navigating among divers while ensuring diver safety are investigated. A reactive 

strategy, based on potential fields, is investigated and applied to station-keeping and 

diver-following. A deliberative approach, which plans the robot’s motion over a finite 

horizon, is presented for diver leading. These approaches are applied to the SeaBotix 

vLBV300 platform for which a simulator is developed based on a decoupled motion 

model for the platform, as well as experimental results in a controlled test tank.  
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I. INTRODUCTION 

A. MOTIVATION 

Traditional Autonomous Underwater Vehicle (AUV) research has focused on 

long-range, open-ocean operations. However, a fundamentally different application 

domain has received little attention: close-quarters operations. Importantly, this includes 

joint diver-robot operations. The underwater domain is inherently dangerous to humans, 

and diver operations are expensive due to limited diver bottom time and required surface 

support. A robotic diver assistant has the potential to improve the efficiency, 

effectiveness and safety of diver operations for all branches of professional divers (e.g., 

military, police, science, etc.). A core requirement for joint diver-robot operations is the 

ability to share the operating space with a human. This is the emphasis of this thesis. Of 

particular interest is the potential benefit to the Salvage, Explosive Ordinance Disposal 

(EOD), Undersea Rescue operations of the Department of Navy, and NASA (Figure 1).  

 
Figure 1.   NASA divers in close-quarter operations with a UUV.  
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Underwater operations are challenging due to communication and vehicle power 

constraints, as well as the sensory-deprived nature of the underwater environment. 

However, one feature of the underwater domain that can be leveraged for joint human-

robot operations is the slower environment dynamics: the divers’ and robot’s mobility is 

inherently constrained. These dynamic characteristics make this application domain 

attractive for the development of complex joint human-robot navigation algorithms since 

the decision cycle can be extended. On the other hand, accurate measurements of the 

underwater environment are difficult to obtain and large environmental disturbances 

exist. The robot has to operate in close proximity to the sea bottom (reefs, rocks, over-

hangs, etc.) and divers and as a result it is critical to anticipate and account for the diver’s 

motion, as well as disturbances and uncertainties in the environment when solving the 

planning problem to ensure diver and robot safety.  

There are three distinct scenarios that are of interest in this work. A station-

keeping scheme is required where the vehicle needs to travel to and stay in a particular 

position and orientation (aka pose). This pose does not necessarily have to be close to 

divers. Second, the vehicle needs to be able to track and follow a diver to support dive 

operations. Third, the vehicle needs to be able to plan and lead a diver from one location 

in the workspace to another. Various planning and execution approaches are available for 

close-quarter operations, and they can broadly be categorized as either reactive or 

deliberative approaches. Reactive approaches plan only one step ahead and thus do not 

take into account likely motion for operating with a diver. As such, the control of the 

robot can be less efficient during the execution of its mission, and more susceptible to 

environmental disturbances. Reactive approaches are also prone to local minima, but 

have the advantage that they are computationally efficient and simple to implement. 

Deliberative methods are able to account for anticipated motion and environmental 

disturbances since the planning problem is formulated over a longer planning horizon. 

They are less computationally efficient and more complicated to implement.  The 

appropriate method strongly depends on the scenario of interest, and as a result both 

strategies are investigated here. 
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B. LITERATURE REVIEW 

The primary objective for unmanned systems research is to eliminate the manned 

element from tasks that are “dirty, dangerous, or dull”. Traditional AUV research has 

focused on long-range, open-ocean type missions. Research related to close-quarter 

operations of AUVs and more specifically joint robot-diver operations, however, is 

limited. Two bodies of research that are related to joint human-robot interaction and 

close-quarter operations are the AQUA robot and the Hovering Autonomous Underwater 

Vehicle.  

The AQUA robot [1], [2], shown in Figure 2, has been under development for a 

number of years, with a research emphasis on novel platform and propulsion design, as 

well as underwater computer vision techniques to detect and track divers and navigate in 

the underwater domain. Specifically, the robot uses a visual servo control to track and 

follow a human diver. The robot could then follow the same path on a future run. In 

contrast, this work focuses on control techniques to allow navigation among divers with a 

small, hovering class, tethered AUV that is additionally suitable for close quarters 

operations, and also considers more general interaction than just following divers, as 

mentioned above.  
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Figure 2.  AQUA robot from [3] 

Also related is the development of the Hovering Autonomous Underwater Vehicle 

(HAUV) to perform hull inspections. This medium-sized (82 kg) vehicle uses a Doppler 

Velocity Log (DVL) and sonar to navigate relative to and survey the hull of a ship [4]. 

These tasks require operation close to underwater objects, but the research is focused on 

the coverage problem: ensuring that they have mapped the entire hull. Joint robot-human 

operations are not investigated and the vehicle size largely disqualifies the vehicle for 

operation close to humans. 

Diver relative navigation can be treated as formation control of an AUV relative 

to a diver. System theoretic and behavior-based methods for formation control, as applied 

to the underwater domain [5], attempt to mimic biological systems (e.g. bird formations). 

The system-theoretic approach [6] uses a decentralized method that uses a global center 

for the formation to track. In a decentralized method, each vehicle is controlled with 

onboard systems to track a global center of the formation (as opposed to a centralized 

method where a single system provides control to each vehicle). The vehicles attempt to 

maintain a pose relative to this global center and are less focused on relative distance to 

one another (i.e., each vehicle implicitly assumes all other entities behave as expected). 

Alternatively, Lewis and Tan propose a virtual structure [7] to maintain a geometric 
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relationship between multiple robots. As the robots move, this virtual structure is updated 

while corrections are applied to the robots to realign for formation control. These control 

approaches are generally applicable to a larger number of vehicles that can each be 

individually controlled. In contrast, this research is concerned with a small number of 

objects (including divers), of which only one can be controlled (i.e., the robot). 

Therefore, these methods are not considered here.  

The three modes of operation of interest in this research are station keeping, diver 

following, and diver leading operations. Planning approaches based on reactive (e.g., 

potential field methods) and deliberative strategies (e.g., path planning and following), as 

applicable to joint robot-diver operations are investigated here. Reactive planners 

consider the current state of the environment and choose an appropriate action. As a 

result, these approaches do not exhibit anticipatory or predictive behavior. One popular 

reactive planning approach is known as Potential Field methods [8]. A potential field is a 

differentiable function, where the potential function itself can be thought of as energy, 

and it’s derivative, or gradient, can be thought of as force. The gradient of the potential 

function at any configuration will yield the maximum rate of change of the potential 

function at that point. The negative of that gradient (gradient descent) applies a force to a 

particle to move the particle to a lower energy state in the field. Potential fields consist of 

the summation of attractive potentials (e.g., to guide the robot towards some goal) and 

repulsive potentials (e.g., to avoid obstacles) [8]. Potential field methods have been 

applied to establishing and maintaining formations of unmanned vehicles [9], avoiding 

obstacles [10], and changing the shape of the formation (e.g., [11]). These methods have 

also been applied to AUV obstacle avoidance [12]. A key benefit of these methods is the 

computational efficiency and the simplicity to implement various behaviors, but it is a 

purely reactive approach and does not predict the motion or activity of the diver. This can 

be problematic when large disturbances exist and can result in inefficient mission 

execution. The method is also prone to local minima in the energy function. Furthermore, 

since multiple potentials are summed to make up the overall behavior of the vehicle, the 

relative importance of each behavior must be specified. In practice it is challenging to 

define a weighting scheme that provides the desired behaviors for a large class of 

scenarios.   
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Deliberative strategies rely on some amount of a priori knowledge to be able to 

solve the trajectory-planning problem over some finite horizon: move the vehicle from 

some initial to a goal pose. In dynamic environments, the spatial and temporal planning 

problems must be addressed simultaneously (in general) in order to reach the goal 

location while avoiding static and dynamic obstacles. These approaches commonly rely 

on some form of optimization formulation, where the form is determined by the cost 

function of interest, the constraints in the system, and the form of the dynamic equations 

[13]. However, these optimization-based approaches tend to be computationally 

intensive. Other approaches to planning in dynamic environments include the Velocity 

Obstacles approach [14] and the Dynamic Window approach [15]. A final alternative is 

separating the spatial and temporal planning problems [13]. This approach is motivated 

by the fact that the only movers in the robot’s environment are the divers. Thus, it is 

appropriate to plan the spatial path to avoid static obstacles in the environment while 

using temporal planning to avoid dynamic obstacles (i.e., divers). This is similar to 

human operations with cars. This separated spatial and temporal planning approach tends 

to be computationally more efficient, and is pursued here. 

Spatial path planning algorithms are again commonly formulated as optimization 

problems, but these approaches tend to be computationally intensive. Alternatively, the 

solution space can be discretized (i.e., a graph-based approach) to efficiently obtain near-

optimal solutions. Graph-based approaches include methods such as visibility graphs, 

Voronoi diagrams, and probabilistic roadmaps [8]. Planning spatial paths inherently 

requires substantial a priori information to construct the graphs and are often only defined 

for static environments. These algorithms normally consist of a graph generation/update 

step and a graph search step. In static environments, these graphs can be generated once 

and the planning process can become very efficient since it only consists of a graph-

search step. Various graph searching methods can be employed to this end (e.g., depth 

first search, breadth first search, A-star) [8]. These searches attempt to find the lowest 

cost path in the graph to connect the goal location to the initial location. A popular 

method for discretizing the problem space (i.e., generating the graph) is the so-called 

incremental sampling approach. These graphs are incrementally generated by randomly 
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selecting configurations and connecting these configurations back into the graph while 

accounting for obstacles and other constraints (including the dynamics of the vehicle). 

Trees are a special type of graph where each node is only allowed to have a single parent. 

This saves computational time since the search starts at the goal and goes to each parent 

until the initial point is reached [8]. Examples of incremental sampling-based planning 

algorithms include Rapidly-exploring Random Trees (RRT) and Expansive Space Trees 

(EST) [8]. These methods are feasible planners: a feasible path is obtained (potentially in 

very complex and high-dimensional state spaces). A version of RRT, known as RRT*, 

has recently been proposed [16]. This algorithm additionally rewires the tree upon node 

generation according to proximal node costs and has been proven to be asymptotically 

optimal. This method is investigated further in this work. 

C. OBJECTIVES 

The focus of this research is the development of a planning and control strategy 

that allows joint robot-human diver operations with an Unmanned Underwater Vehicle. 

An approach is desired that can simultaneously avoid the divers to ensure safety and 

follow or lead the divers to provide mission assistance. The objectives are: 

• Perform station-keeping operations without any interaction with divers. 

• Follow a diver while maintaining a specified relative pose. 

• Plan a path and lead a diver to a specified location while avoiding 
obstacles. 

• Demonstrate these operations in simulation as well as experimentally (in a 
controlled dive tank environment). 

Based on these objectives, the following research tasks have been identified: 

• Develop a decoupled model of the development platform, which can be 
used for planner/controller development and as a basic simulation 
capability. 

• Investigate planning strategies (e.g., reactive and deliberative methods) 
that allow the vehicle to follow a diver, generate a path, and lead a diver to 
a goal location while avoiding obstacles and ensuring diver safety. 

• Develop executive control strategies (in particular the path following 
controller) that allow the vehicle to follow a generated path with minimal 
deviation. 



 8 

THIS PAGE INTENTIONALLY LEFT BLANK 



 9 

II. EXPERIMENTAL SETUP 

A. SEABOTIX VLBV300 PLATFORM 

To operate in close-quarters with humans, the platform must be small, agile, and 

be able to respond in multiple directions, including sway, to ensure diver safety. The 

platform should have sufficient control authority to overcome currents, surge, and other 

environmental disturbances and must allow for the integration of various sensor payloads, 

including sonar, a Doppler Velocity Log (DVL), and Inertial Navigation System (INS). 

The experimental platform for this research is the SeaBotix vLBV300 platform, 

shown in Figure 3 [17]. It is a tethered, Remotely Operated Vehicle (ROV). The 

vLBV300 has six thrusters, two for vertical and roll control, and four vectored thrusters 

for control in the surge, sway, and yaw directions, as shown in Figure 3. A computer 

control-interface has been developed for the vehicle that leverages a high-level (joystick) 

control interface (surge, sway, heave, yaw) and individual thruster control (surge, sway, 

heave, yaw, roll), resulting in a Tethered, Hovering Autonomous Underwater System 

(THAUS).  

 
Figure 3.  The SeaBotix vLBV300 tethered AUV platform  (left), and the planar 

vectored thruster configuration (right) from  [18]. 
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The vehicle coordinates are chosen to be positive x in the forward surge direction, 

positive y in the starboard sway direction, and positive z in the downward heave direction 

(refer to Figure 4). Yaw is defined between -  and +  with zero in the positive x 

direction and increasing clockwise. 

 
Figure 4.  THAUS body reference frame and variable definitions after [18]. 

For this research, the platform has no onboard sensors (e.g., an inertial navigation 

system) and position and orientation measurements are obtained from an external system, 

which is discussed next.  

B. VEHICLE LOCALIZATION AND TRACKING 

The vehicle position and orientation must be known at all times in the operating 

space to allow for autonomous control, verifying system response and ensuring diver 

safety. Ideally, internal sensors (e.g., INS, camera, sonar, DVL, etc.) would supply this 

information. However, these are not currently available and this is a notoriously hard 

problem to solve. As a result, position and orientation measurements are obtained from 

an external localization system in this research.  

Position and orientation (aka pose) data for the vehicle are determined using a 

VICON motion capture (MoCap) system. The infrared (IR) camera-based MoCap system 

π π
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provides accurate marker tracking (<1cm) at a high rate (100 Hz)  [19]. However, due to 

electro-magnetic wave attenuation in water, the current MoCap setup can only be utilized 

above the water surface. As a result, the THAUS has been extended with a low-inertia 

structure above the water surface, which can be tracked by the MoCap and from which 

the vehicle pose can be calculated. This structure does affect the vehicle dynamics, but 

these effects are neglected. Four infrared cameras surround the experimental test tank 

(see Figure 5).  

 
Figure 5.  NPS instrumented dive tank (VICON cameras circled in red). 

The default coordinate system provided by the MoCap setup is a right handed, 

north, east, up, or NEU (for x, y, and z, respectively), coordinate system. For UUVs, the 

coordinate system of interest is north, east, and down, or NED (for x, y, and z, 

respectively). Therefore, the default coordinate system is transformed to the NED system 

by applying a negative gain to the yaw orientation to achieve positive rotation clockwise. 
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Additionally, the NED coordinate system is rotated into a body fixed frame of reference 

by the following rotation matrix: 

 R =
cosψ −sinψ
sinψ cosψ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (0) 

where ψ is the yaw angle of the vehicle.  

This localization information is used to develop a simple, decoupled motion 

model for the vehicle, as well as implement and execute planning and control strategies. 

The dive tank’s approximate dimensions are 6 meters by 3 meters by 2 meters deep. The 

use of this setup effectively limits the experimental setup to a two-dimensional, three-

degree of freedom system (i.e., planar motion): surge, sway, and yaw. The z direction is 

not investigated due to the limiting space. Additionally, obstacle avoidance for 

deliberative methods is only simulated due to the space constraints for experimental runs.  

C. DIVER DETECTION AND TRACKING 

Diver detection and tracking is an important and challenging research problem. 

Ideally, diver detection and tracking will be performed on sensors onboard the THAUS, 

using both electro-optical and acoustic data. However, this is research topic in itself and 

falls outside the scope of this thesis. Instead, a virtual diver is used during development 

of the control and navigation strategies to demonstrate the joint robot-diver capabilities. It 

is assumed that the position and orientation of the diver is known, and a simple, constant 

velocity dynamic model of the diver is assumed (if necessary).  
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III. DECOUPLED DYNAMIC MODELS 

A detailed, 6-DOF hydro-dynamic model of THAUS is currently being developed  

[20]. However, a simplified, decoupled dynamic model is desired to capture simple 

motion for the vehicle in the surge, sway, and yaw directions (i.e., planar operations) for 

this work. First, the response of the system to high-level commands is investigated, 

before extending this model to allow position control. Based on these models, a basic 

simulation capability is developed for planar motion. The models and associated 

assumptions are presented below. The Simulink block diagrams and associated 

MATLAB scripts for the simulator are contained in Appendix A. 

A. VELOCITY RESPONSE 

Utilizing standard control theoretic model identification techniques (e.g., see  

[21]), the decoupled planar dynamics of THAUS are determined by specifying a step 

input in the surge, sway, and yaw directions, respectively, while recording the vehicle 

response in the test tank using the VICON Motion Capture system. The high-level 

(joystick) interface is used. These commands are scaled thruster RPM commands, 

resulting in a specified thrust. This relationship between the high-level command and 

generated thrust is non-linear in general, but it is implicitly assumed that the mapping 

between the joystick command and the resulting force is linear for the simplified, 

decoupled models of interest here. Let v(t) be the velocity and f(t) be the force input (i.e., 

joystick command). In general, the transfer function for the plant is defined as (for surge, 

sway, and yaw):  

  (1) 

where V(s) and F(s) are the Laplace transforms of v(t) and f(t), respectively (see Figure 

6). f(t) is a step input of magnitude Kj, resulting in the following transfer function: 

  (2) 

( )( )
( )

V sP s
F s

=

1( ) jF s K
s

=
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Figure 6.  Block diagram of the open-loop system for a single channel (i.e., decoupled), 

assuming a first-order system response. 

Based on the response of the system in each individual channel (e.g., see Figure 7 

for the surge direction), a first-order model is assumed for the plant, written in terms of 

the steady state velocity (vf) and time constant (tc). The transfer function for a generic 

first order system is: 

  (3) 

where   can be related to the step-response variables. 
As an example, the step input for the model is compared with the experimental 

results in the surge direction in Figure 7. This formulation implicitly assumes that the 

mapping between the joystick command magnitude (Kj) and the generated thruster force 

is linear. It is also assumed that the model will operate close to the trim condition for 

which it is developed. This is not strictly the case, but since the objective is to develop 

simplified, decoupled dynamic models that will be used with feedback controllers, the 

resulting models are sufficient. As can be seen in Figure 7, the velocity appears to be 

increasing slightly at the end, but longer datasets are not possible due to the experimental 

setup. Recommendations for overcoming this limitation in the experimental setup is 

presented in the Conclusions section. 

PF (s) =
Kp

(s+ 1
tc
)

f
p

j

v
K

K
=
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Figure 7.  Comparison of velocity step responses from vehicle and model in the surge 

direction. Similar results were obtained for the sway and yaw channels. 

The resulting 1st order systems for the independent channels are presented in 

Table 1. Note that the assumption of decoupled dynamics suggests that these behaviors 

can be superimposed when coupled motions are executed. The validity of this assumption 

will be addressed below. 

 
Channel Transfer Function 
Surge 

 
Sway 

 
Yaw 

 
Table 1.   First order transfer functions determined from velocity response in the 

individual channels 

From Table 1 it is clear that the yaw time constant is the smallest, and therefore 

has the fastest dynamics of the three channels. In practice this means that yaw corrections 

can be made more readily than the other channels. Furthermore, the sway response has 
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the largest time constant (slowest dynamics), which makes sense since the vehicle has the 

least amount of control authority in this direction. 

B. POSITION RESPONSE 

For the applications of interest, it is additionally desirable to control the position 

of the system. The first order (velocity) system generated in Section III.A can be 

integrated to obtain position. This position data can then be used with negative feedback 

control to achieve a desired position (see Figure 8). With the first order (velocity) system 

determination, a constant force was used, and the resulting velocity response was 

assumed to be linear. An alternative method to approximately account for the non-

linearities in the system response is to apply a varying magnitude force. The same setup 

in Figure 8 can be used to measure the position response and to reevaluate the values for 

Kp and a. In order to develop a simple, decoupled model for the position step response, it 

is assumed that the required command (and thus thrust) is proportional to the position 

error between the reference and the actual vehicle position. 

 

Figure 8.  Block diagram of closed loop system resulting in second order response for 
position control. 

A generic second order transfer function is given by: 

  (4) 
From the step-input response of the second-order dynamic system, the values for percent 

overshoot and peak time can be used to completely define a second order system:  

 ζ = − ln(%OS /100)
π 2 + ln2 (%OS /100)

  (5) 

2

2 2( )
2

n

n n

G s
s

ω
ζ ω ω

=
+ ⋅ ⋅ +
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 ω n =
π

Tp 1−ζ 2
  (6) 

The values that are determined are for the second order position response of the closed 

loop system (see Figure 8). The open loop and closed loop system are related by    

  (7) 
where G(s) is the open loop transfer function. The open loop transfer function can then be 

calculated as: 

  (8) 

From the block diagram in Figure 8:   

  (9) 
and therefore the plant can be determined from the measured closed-loop response: 

  (10) 
where Kej is the gain that scales the position error to force. Substituting the measured 

values for ζ and ων   as well as the constant Kej , the transfer function for the plant is : 

  (11) 
Figure 9 shows a comparison of a step response from the model determined by 

ζ  and wn to the actual response (for example in the surge direction). The model initially 

follows the vehicle response up to the maximum overshoot. The model and plant 

response then diverge due to the un-modeled nonlinearity in the joystick-force 

relationship. The settling time of both responses is about the same however, so this 

deviation is acceptable as the initial transient and final steady state values are the same. 

The resulting 1st order transfer functions for the plant in the surge, sway, and yaw 

directions, based on this approach, are given in Table 2. 

( )( )
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Figure 9.  Comparison of position step responses from vehicle and model in the surge 

direction. Similar responses are obtained for the sway and yaw channels. 

Channel Transfer Function 
Surge  

Sway  

Yaw  

Table 2.   Transfer functions based on position response of the system in the 
individual channels 

C. SIMPLIFIED, DECOUPLED MODEL COMPARISON 

In order to compare the responses for the velocity and position response models, 

the first order velocity model is used as part of a position controller (i.e., in the closed 

loop transfer function as in Figure 8) to demonstrate the difference in behavior when 

0.000246
0.238s +

0.000126
0.217s +

0.00381
0.714s +
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subjected to a step input in reference position. Figure 10 shows the comparison of the 

actual plant response in addition to the position and velocity models in the surge direction 

of the vehicle.  

 
Figure 10.  Comparison of velocity and position models and the experimental results for a 

step input in position. 

Both models reach a steady state value of one. The velocity model shows a slower 

response time and a higher damping ratio than the position model. The position model 

has a similar rise slope, peak overshoot, and settling time as the actual plant. From this 

result it is concluded that the position response model measured from the assumed 2nd 

order dynamics more accurately captures the system response and is used for plant 

modeling and control determination in the following section. 
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IV. TECHNICAL APPROACH 

For this research, the THAUS is to operate in three separate scenarios:  

• station-keeping, where THAUS moves towards and maintains a specified 
pose without regard to a diver;  

• diver-following, where THAUS tracks and follows a diver; 

• diver-leading,  where THAUS leads a diver to a goal location.  
These modes of operations have distinct requirements for planning, control, and 

navigation and the developed approaches in each case are presented below. A PID 

controller and potential field are proposed for both station-keeping and diver-following 

operations. A potential field and deliberative planning method are proposed for diver-

leading operations. The Simulink block diagrams and MATLAB scripts associated with 

these modes are contained in Appendix B. 

A. PID CONTROL 

One of the fundamental requirements for underwater operations is to move into, 

and maintain, a specified pose while minimizing offset errors and rejecting disturbances. 

PID controllers are commonly used for this purpose. Using the simplified, decoupled 

models of the system developed for the surge, sway, and yaw directions, three 

proportional, integer, and derivative (PID) controllers are implemented for the surge, 

sway, and yaw channels (see Figure 11).  
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Figure 11.  Block diagram of PID controller applied to transfer function 

The design criteria for each channel include: less than 10% overshoot, less than 20 

seconds settling time, and 0 steady-state error. The uncompensated root locus plot and 

corresponding step response for the surge channel are shown in Figures 12-13. 

 
Figure 12.  Uncompensated, open loop pole locations and branches for surge motion. 
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Figure 13.  Uncompensated step response in surge motion. 

The settling time for the uncompensated system is over 20 seconds with 30% 

overshoot.  The root locus only has two branches that depart at a 90-degree angle. While 

the response time can be lessened by just adding a proportional gain along those 

branches, further design criteria like damping ratio, settling time, and peak overshoot 

cannot be adjusted. To make these adjustments, integral- and derivative feedback control 

are added and tuned to provide the desired response. Figures 14 and 15 show the updated 

root locus plot and corresponding, closed loop step response for the compensated system. 
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Figure 14.  Compensated, open loop pole locations and branches for surge motion. 

 
Figure 15.  Compensated step response in surge direction. 
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The PID controller adds additional branches to the root locus for tuning, and the 

step response shows the desired criteria of less than 10% overshoot, less than 20 seconds 

settling time, and 0 steady-state error. Similar results for the sway and yaw channels are 

obtained. Table 3 contains the values for the PID controllers for each channel. 

Channel Proportional Integral Derivative 
Surge 885 10 3175 
Sway 1500 10 6000 
Yaw 315 4 320 

Table 3.   PID controller design for station keeping 

The greatest limitation of PID control for close-quarter operation is the inability to 

use it to avoid obstacles. The controller simply looks at the distance between the THAUS 

and the goal to calculate the control signal. Additionally, large errors can cause integral 

windup, leading to a vehicle moving too quickly towards a diver to ensure safety. These 

limitations motivate the potential field approach, which is discussed next. 

B. POTENTIAL FIELD APPROACH 

A diver may need to perform work underwater: hull inspection, underwater mine 

neutralization, or underwater archeology. Sharing the workspace with divers require both 

station-keeping and diver avoidance. The diver is in charge of the workspace and the 

robot must respond to diver motion. Thus, the robot must maintain a pose while 

additionally avoiding obstacles in the environment. Artificial potential fields are useful 

for this purpose since the THAUS will simply be reacting to and following the diver’s 

movements. 

A potential field is a differentiable function, where the potential function itself 

can be thought of as energy, and it’s derivative, or gradient, can be thought of as force 

[8]. The gradient of the potential function at any configuration will yield the maximum 

rate of change of the potential function at that point. The negative of that gradient 

(gradient descent) defines a force that, when applied to a particle, moves the particle to a 

lower energy state in the field.  
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Potential field methods are attractive due to their computational efficiency and 

implementation simplicity. Various behaviors can be individually implemented as 

discrete potentials, the effects of which can then be super-imposed to obtain more 

complex behaviors. Potential fields consist of the sum of attractive potentials (e.g., to 

guide the robot towards some goal) and repulsive potentials (e.g., to avoid obstacles). 

  (12) 

The negative of the gradient of the potential function defines a force on a particle. 

This particle is assumed to be able to move omnidirectionally along the gradient. Particle 

motion does not account for vehicle dynamics (turn rate, pose, etc.), but since THAUS 

has three-degrees of freedom in the horizontal plane, particle motion is a reasonable 

assumption.  

One drawback of the method is that the relative importance of these behaviors 

must be defined (by scaling the effects of the individual potentials). It can be challenging 

to get a single relative scaling that is appropriate in all situations. 

In this work, the position and orientation of the diver is assumed to be known and 

the THAUS’ goal is specified relative to this diver’s location (see Figure 16): 1 meter to 

the diver’s port side and pointing to a position 1 meter ahead of the diver (to simulate 

illuminating the diver’s workspace). Note that diver detection and tracking based on 

onboard sensors are beyond the scope of this thesis. 

( ) ( ) ( )att repU q U q U q= +
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Figure 16.  Desired pose for the THAUS in relation to the diver. 

1. Attractive Potentials 

One choice for the attractive potential to draw the vehicle to a goal location is to 

make the gradient of the potential proportional to the distance between the THAUS and 

the goal. As the THAUS travels towards the goal, the generated force of the attractive 

potential will decrease. The attractive potential given by  [8] is used to pull the THAUS 

towards the goal location (refer to Figure 17): 

  (13) 

whose gradient is  

  (14) 
 is a three-element proportional constant (scaling factor), used for each channel to 

achieve satisfactory response, q is the pose (position and orientation) of the THAUS,  

qgoal is the goal location and d is the distance between the THAUS and the goal. This 

attractive gradient is essentially a proportional controller that uses the distance between 

the THAUS and the goal as the error signal with a proportional constant to minimize the 

error. As a result, the potential field method can be used for station keeping as well. As 

21 ( , )
2att goalU d q qζ=

( ) ( )att goalU q q qζ∇ = −

ζ
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illustrated in Figure 17, the gradient (and thus the attractive force) is linear, and the 

gradient is zero at a distance of zero. 

 
Figure 17.  Attractive potential (top) and gradient (bottom) that defines an attractive force 

towards the goal location. 

2. Repulsive Potential 

The repulsive potential is used to keep THAUS away from obstacles (including 

divers). As the distance between the THAUS and the diver decreases, the gradient of the 

potential must increase. To ensure diver safety, an aggressive repulsive potential is used 

to push the robot away from the diver (refer to Figure 18). As the distance between the 

robot and diver approaches zero (i.e., a collision), the repulsive force approaches infinity:   
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whose gradient is 

  (15) 

d is the distance between the THAUS and the obstacle (diver), η is a proportional 

constant to achieve desired results, and Q* is a threshold distance beyond which this 

behavior is ignored (i.e., the THAUS is far from the diver). From Figure 18, the function 

yields zero gradient (and conversely force) far away from an obstacle, but the gradient 

(force) quickly increases as the distance approaches zero. 

 
Figure 18.  Repulsive potential (top) and gradient (bottom) that defines a repulsive force 

to maneuver the THAUS away from a diver 

As an additional measure of safety, at a minimum safety circle from the diver the 

attractive potential is disabled.   
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The limitation of the potential field method is that it is purely reactive. This 

method does not anticipate diver motion and does not reason about global path planning 

(i.e., through an obstacle field). This method will be inadequate when attempting to lead 

divers along a path with several obstacles. 

C. DELIBERATIVE PLANNING 

For the final mode of operation, it is not only the THAUS that is reactive but also 

the diver. The THAUS now leads the diver from one location to another. For this mode of 

operation, the THAUS is assumed to only maneuver in the horizontal plane, with a 

known start and goal location. Additionally the environment is assumed to be static, 

except for the divers, and reasonable a priori information of the configuration space is 

available. This portion is broken into three sections: a path-planning algorithm, a velocity 

scaling algorithm along the spatial path, and path following controller. 

Incomplete environment information introduces uncertainty into the planning 

problem. The recommended approach for handling this uncertainty due to incomplete 

environment state information is to frame the problem in terms of Receding Horizon 

Control: the planning problem is solved over some finite horizon, but only a fraction of 

the plan is executed before the entire planning problem is re-solved to account for new 

information. In this framework, the trajectory-planning algorithm used needs to be 

computationally efficient to allow re-planning as new information (obstacles) become 

available. Furthermore, the approach needs to be near-optimal to ensure efficient motion. 

This requirement for near optimality is motivated by the energy intensity of divers' 

motion in the underwater environment.  

Since the environment is assumed to be mostly static with only other divers 

moving in the environment, it is reasonable to separate spatial and temporal planning 

[13], [16]. An analogous example of separating spatial (i.e., path planning) and temporal 

planning is car driving: spatial planning is used to satisfy traffic rules, follow roads, and 

avoid static obstacles, while temporal planning is used to avoid other vehicles. 
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1. Spatial (Path) Planning 

The goal for many path-planning algorithms is to find a path between an initial 

starting location and a goal location. Spatial path planning algorithms are commonly 

formulated as optimization problems, but these approaches tend to be computationally 

intensive. Alternatively, the solution space can be discretized to obtain near-optimal 

solutions, including roadmap methods (e.g., visibility graph, Voronoi diagram, 

probabilistic roadmaps). These algorithms normally consist of a graph generation/update 

step and a graph search step. In static environments, these graphs can be generated once 

and the planning process can become very efficient (i.e., multi-query approaches). Once 

the graph is created, different search routines can be used to find a path between the 

initial and goal location (e.g., breadth first search, depth first search, A-star). If sufficient 

a priori knowledge of the environment is available, a single path can be created and 

followed. If the a priori information is incomplete, or the robot operates in a dynamic 

environment, the path will have to be re-planned to account for new information and 

environmental changes.  

Trees are a special type of graph where each node is only allowed to have a single 

parent. This saves computational time since the cost evaluation is built into the tree 

structure during generation and the search starts at the goal and progresses up the tree to 

the initial location. Rapidly exploring random trees (RRT), RRT* and expansive-spaces 

trees (EST) are examples of trees. 

For this implementation, a variant of the RRT method is used to plan a spatial 

path. RRT can account for vehicle dynamics and plan a path that is feasible within 

vehicle constraints, but the path may not be efficient. For the THAUS, the vehicle can 

operate independently in surge, sway, and yaw, so accounting for vehicle dynamics is not 

strictly necessary for path planning. The tree is defined by vertices, V, and edges, E, that 

defines the connections between the vertices. Vertices commonly correspond to poses in 

the configuration space.  

In RRT, the graph is generated as follows: a random point is generated, xrand, in 

the configuration space. The Nearest function then finds the nearest vertex in the existing 
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tree, xnearest. The Steer function then steers xnearest towards xrand in a straight line 

generating a new point, xnew. The ObstacleFree function determines whether a collision 

occurs on the path connecting xnearest and xnew. If not, xnew is added to V, and the edge 

between xnearest and xnew is added to E. This continues until xnew equals qrand or xnew 

encounters an obstacle. Next, the algorithm then searches from the goal location to the 

nearest point on the tree and determines if a collision free path exists. If a path exists the 

algorithm terminates, if not, a new random point is generated and the algorithm 

continues. The algorithm, adapted from  [16], is shown in Figure 19. 

1: V ← {xinit};  E ← 0;
2: for i = 1,...,n do
3:     xrand ← SampleFreei;
4:     xnearest ← Nearest(G = (V ,E), xrand );
5:     xnew ← Steer(xnearest , xrand );
6:     if ObstacleFree(xnearest , xnew ) then
7:         V←V∪{xnew};E← E∪{(xnearest , xnew )};
8: return G=(V,E)

   

Figure 19.  RRT algorithm after  [16] 

An example of a solution obtained with the RRT algorithm is shown in Figure 20. The 

planner initial location is the red circle on the left, the goal location is the red circle on 

the right. The blue polygon is an obstacle in the workspace. The RRT algorithm found a 

feasible path (red), using 59 vertices. 
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Figure 20.  Example of RRT path from initial location on left to goal location on right 

As can be seen in Figure 20, the RRT algorithm is a feasible planner and does not 

yield an optimal path. A variant of RRT, called RRT*, is a near-optimal planner. The 

algorithm, adapted from  [16], constructs and grows the tree in the same way as RRT. 

However, the tree is augmented with edge costs that capture the path length from the 

initial point to each vertex. After a new point is added to the tree, the Near function finds 

the set of vertices within a specified radius of xnear (i.e., close to the newly added vertex), 

Xnear. The CollisionFree function then determines if the path between xrand and Xnear is 

collision free. If the path is collision free and a path between xrand and the set of vertices 

in Xnear is lower cost than the path between xrand and Xnearest, then Xnear is added to V and 

the path between Xnear and Xrand is added to E (see Figure 21 for the pseudo code). This 

results in the type of starburst pattern shown in Figure 22.  
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1: V←  {xinit};  E ←  0
2: for i = 1,...,n do
3:     xrand ←  SampleFreei

4:     xnearest ←  Nearest(G=(V,E),xrand )
5:     xnew ← Steer(xnearest , xrand );
6:     if ObstacleFree(xnearest , xnew ) then
7:         Xnear ← Near(G=(V,E),xnew ,min{γ RRT*(log(card(V )) / card(V ))1/d ,η})
8:         V←V∪{xnew}
9:         xmin ← xnearest ;cmin ←Cost(xnearest )+ c(Line(xnearest ,xnew ))
10:       foreach xnear ∈Xnear  do  // Connect along a minimim-cost path
11:           if CollisionFree(xnew , xnear )^Cost(xnew )+ c(Line(xnew , xnear )) <Cost(xnear )
12:               xmin ← xnear;  cmin ←Cost(xnear )+ c(Line(xnear , xnew ))
13:       E ← E∪{(xmin, xnew )}
14:       foreach xnear ∈Xnear  do //rewire the tree
15:           if CollisionFree(xnew , xnear )^Cost(xnew )+ c(Line(xnew , xnear )) <Cost(xnear ) 
16:           then x parent ← Parent(xnear )
17:           E ← (E\{(x parent , xnear )})∪{(xnew ,  xnear )}
18: return G=(V,E)

  

Figure 21.  RRT* algorithm after  [16] 

 
Figure 22.  Example of RRT* path from initial location on left to goal location on right 
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The MATLAB implementation of RRT* uses 1,000 vertices with γ equal to 30 

and η equal to 10 and takes about 6 seconds to run. A C implementation of the same 

algorithm takes less than a tenth of a second for 5,000 vertices! Thus, this planning 

approach is feasible for real-time implementation and re-planning. The MATLAB 

implementation is not as efficient for searching the closest neighbor as the tree becomes 

larger and larger. The current time scale for the MATLAB implementation works in a 

static environment, but a dynamic environment requires the speed of the C 

implementation to re-plan paths in real time. 

2. Temporal (Velocity) Planning 

Once the spatial path is generated, the velocity along the path must be planned 

while accounting for dynamic obstacle motion (most notably the divers). Since the 

development platform has independent control of the surge velocity, the proposed 

approach is to regulate this velocity based on the distance between the diver and the 

vehicle. The desired following distance for this scenario is one meter. The error between 

the desired and actual following distances is used with a proportional controller to keep 

the error to one meter. For safety, the THAUS will only travel forward to increase the 

distance from the diver, never towards the diver. When the diver swims towards the 

THAUS, the separation distance will fall below the desired threshold, causing a positive 

surge control signal to the THAUS that will speed the vehicle up. If the diver slows 

down, the following distance will increase, causing the THAUS to slow down and 

eventually stop to wait for the diver to catch up (see Equation 17).  

   (16) 

3. Spatial Path Following 

A path-following controller, based on waypoint navigation and cross-track errors, 

as developed in  [22] and  [23], is adopted for path following (see Figure 23). The set of 

vertices that connected the goal to the initial location from the RRT* algorithm define 

individual straight-line segments and thus define a set of waypoints. The THAUS will 

control signal = 1 -  dTHAUS ,Diver  d ≤1
control signal =  0 d >1
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move along the path, pointing towards the next waypoint on the path. The PID controller 

for yaw developed in Section IV.A is used to point the vehicle at the next waypoint (i.e., 

heading control). Once within a watch circle radius (0.1 meters in this scenario), the 

THAUS will select and point to the next waypoint. To minimize cross track error (i.e., 

the lateral offset of the vehicle from the track), two separate controllers are used, based 

on the magnitude of cross track error: a Cross Track Error (CTE) controller that controls 

sway to minimize cross track error, and a Line of Sight (LOS) controller that points the 

vehicle along the line of sight (perpendicularly) to the track line and drives forward to 

intercept the track line. 

  
Figure 23.  Diagram of waypoint following with cross track error from  [23]  

Mode 1: A CTE controller is used to keep the THAUS on the track line via the 

sway channel when the cross track error is less than a specified threshold (one meter for 

this scenario). The cross track error is calculated by first calculating the distance between 

the two waypoints defining the current path segment: 

  (17) 

The track angle is calculated by: 

  
Li = ( X wpt ( i) − X wpt ( i−1) )

2 + (Ywpt ( i) −Ywpt ( i−1) )
2
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  (18) 

The difference between the current position and next waypoint is: 

 ( ) ( )

( ) ( )

( ) ( )

( ) ( )
wpt i wpt i

wpt i wpt i

X t X X t
Y t Y Y t

= −

= −
 (19) 

The distance from the vehicle to the ith waypoint, projected onto the track line S(t)i, is: 

 ( ) ( ) ( 1) ( ) ( ) ( 1)( ) ( )( ) ( )( )i wpt i wpt i wpt i wpt i wpt i wpt iS t X t X X Y t Y Y− −= − + −  (20) 

The angle between the track line and the line of sight (angle between current heading and 

heading to next waypoint) is defined by: 

 ( ) ( 1) ( )1 1

( ) ( 1) ( )

( )
tan tan

( )
wpt i wpt i wpt i

p
wpt i wpt i wpt i

Y Y Y t
X X X t

δ −− −

−

−
= −

−
 (21) 

Note that the proper quadrant must be verified when using the arctangent function. 

Finally the cross track error is given as: 

  (22) 

Since the sway degree of freedom of the vehicle can be independently controlled, any 

cross-track error is driven to zero using the PID controller developed for station keeping 

in this direction.  

Mode 2: the LOS controller is used if the vehicle has greater than 1 meter of cross 

track error. In this case, the THAUS will point and move towards the closest point on the 

track until it is 0.5 meters away, before resuming waypoint navigation and CTE control. 

 

( ) ( 1)1
( )

( ) ( 1)

( )
tan

( )
wpt i wpt i

trk i
wpt i wpt i

Y Y
X X

ψ −−

−

−
=

−

( ) ( )sin( ( ))i pt S t tε δ=
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V. RESULTS 

For this research, the THAUS is to operate in three separate situations:  

• station-keeping, where THAUS will move towards and maintain a 
specified pose without regard to a diver;  

• diver-following, where THAUS tracks and follows a diver; 

• diver-leading,  where THAUS will lead a diver to a goal location. 
The technical approaches developed in the previous chapter are applied and 

evaluated for these scenarios here. 

A. STATION KEEPING 

The goal of station-keeping is for the THAUS to move into and maintain a 

specified pose while minimizing offset errors and rejecting disturbances. Two methods 

are examined to achieve this goal: a PID controller and a potential field method. 

1. PID Control Applied to Station Keeping 

The PID values from Table 3 in Chapter IV are used both in simulation and 

experimentation with the THAUS in the CAVR test tank. The results in Figures 25-27 

show the response of the simulation and the THAUS to several changes in pose. These 

changes are performed simultaneously for the three channels (i.e., coupled motion) to 

evaluate the response of the vehicle to go from an initial to a final pose. Recall that  it is 

assumed that no coupling occurs between the channels for the development of the 

simplified dynamic model. In reality the THAUS uses vectored thrusters: the same four 

thrusters control surge, sway, and yaw motion. Some coupling between the different 

channels is expected due to the vectored thrusters. However, the THAUS is able to 

respond to the changes in pose and achieve minimal stead state error (based on the length 

of time) even with this restrictive assumption. From the figures it can be seen that the 

controllers developed in simulation perform adequately on the actual vehicle as well. The 

slight difference in model vs. vehicle response is not important here. 

PID controllers have the potential to effectively reject disturbances. The integral 

controller in particular can achieve a zero steady-state error even with disturbances like 
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currents. Due to the limitations of the experimental setup, disturbance rejection was not 

tested, but will be evaluated in future work. 

 
Figure 24.  Step responses in surge with PID position control and coupled motion. 

 
Figure 25.  Step responses in sway with PID position control and coupled motion. 
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Figure 26.  Step responses in yaw with PID position control and coupled motion. 

2. Potential Field Method Applied to Station Keeping 

To illustrate the potential field method for station keeping, Figures 28-31 show 

the response of the vehicle using a potential field superimposed with results from the PID 

controller (both in simulation). The potential field method has a slower response than the 

PID controller due to the lack of derivative control in the potential field approach. 

Although the potential field method shows zero steady-state error, the THAUS has a dead 

band that is not modeled where the integral control is necessary to cancel out any steady 

state error. 
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Figure 27.  PID and PF response in x direction 

 
Figure 28.  PID and PF response in y direction 
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Figure 29.  PID and PF response in ψ direction 

3. Discussion 

The PID controller and potential function are both viable solutions for station-

keeping operations. The potential field method is less tunable and has a slower response 

than the PID controller due to the lack of integral and derivative controllers. Overall the 

advantages in tuning the PID controller and disturbance rejection make the PID controller 

better for station-keeping operations. 

B. DIVER FOLLOWING 

For diver-following, the THAUS must react to and follow the diver while 

ensuring diver safety. The results of using a PID controller and potential field method are 

presented. Deliberative approaches are unable to currently predict diver behavior and are 

not used for diver following. This will be addressed in future works. 

1. PID Control Applied to Diver Following. 

To demonstrate the PID control scheme applied to diver following, Figure 30 

illustrates the results when the station keeping PID controller is used to move the THAUS 
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from an initial pose to the goal location. The goal pose (green arrow) is on the opposite 

(right) side of the virtual diver (black arrow) from the initial pose (red circle). Since the 

method does not account for obstacles, the THAUS path (blue) passes through the diver 

when moving to the goal. This is not unexpected since the PID control approach does not 

contain a mechanism for obstacle avoidance. This method is inadequate to ensure diver 

safety. 

 
Figure 30.  THAUS path using PID control only 

2. Potential Field Method Applied to Diver Following 

To illustrate the application of the Potential Field method to diver following, 

Figure 31 shows a simulated run (blue) in the same scenario as Section IV.B.1. The 

THAUS starts at the red circle on the left side of the diver (black) with the goal (green) 

on the right side of the diver. The repulsive potential keeps the THAUS away from the 
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diver and the THAUS is able to navigate around the diver to the goal. On the same figure, 

the measured path of THAUS (red) navigating the same scenario in the CAVR test tank 

and using the reactive scheme verifies the desired behavior. Headings are indicated with 

arrows. 

 
Figure 31.  Simulated (blue) and measured (red) paths using the potential field method.  

Figures 32 and 33 show the attractive and repulsive gradients, respectively acting 

on the vehicle as a function of time. These functions do not line up exactly since the 

potential is a function of the vehicle position, which differs slightly for the simulated vs 

real vehicle. This offset is not a concern here since the objective is to demonstrate that the 

method developed based on the simulated system responds appropriately on the vehicle 

as well. 
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Figure 32.  Attractive gradient results in NED 

 
Figure 33.  Negative gradient results in north and east directions 
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These results are applicable to a stationary diver (e.g., a diver performing a task in 

the workspace while the robot provides utility such as illuminating the workspace). For 

the next experiment, the virtual diver moved forward at a velocity of 0.4 m/s. Figure 34 

shows the absolute error in meters between the THAUS and diver-relative goal pose. 

 
Figure 34.  Distance error between goal location and THAUS 

The THAUS has an initial lag behind the diver since it accelerates from rest 

(whereas the diver is moving). Due to the constant velocity of the diver and the 

proportional potential function of the THAUS, the THAUS lags behind the diver by 0.2 

meters. Extensions to the potential field function are introduced in the next section to 

improve the system performance when following a moving diver. 

3. Potential Field Method Performance Improvement 

A disadvantage to using the potential field as defined before is that it is reactive to 

the diver’s instantaneous position only (i.e., it takes the current most appropriate action 
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without regarding past or future actions or consequences). As a result, the THAUS will 

always lag behind the goal if the diver is moving. Two improvements are proposed to the 

attractive potential to speed up the response and minimize steady state error. To speed up 

the response to the diver’s motion, an additional attractive potential function is added to 

match the vehicle’s velocity with diver’s velocity: 

  (22) 

V is the velocity of the THAUS and Vgoal is the velocity of the goal (i.e., the diver). This 

term is tuned to provide a rapid input to the vehicle as soon as the diver moves. This is a 

similar structure to a derivative controller in Section IV.A that drives the rate of change 

of the error to zero. Another potential gradient  

  (23) 

is added to drive the accumulated steady state error in position to zero. This potential will 

increase over time if the error between the THAUS and goal persists (in the same way 

that an integral controller in Section IV.A works). This potential acts to overcome 

nonlinearities such as deadband in the vehicle response at low excitation levels.  

Figure 35 shows a comparison between the two methods. The Figure shows that 

the augmented approach has a quicker response, less peak error, and smaller steady state 

error than the standard potential field alone (the error never reaches zero due to the size 

of the dive tank).  

( ) ( )vel v goalU V V Vζ∇ = −

int int ( )goalU q q dtζ∇ = −∫
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Figure 35.  Experimental comparison of the two potential field approaches 

4. Discussion 

The PID controller is not a viable solution for diver-following operations due to 

the lack of obstacle avoidance. The potential field method is a viable solution to have the 

THAUS navigate around the diver into a goal position. Adding the integral and derivative 

potentials to the attractive potential only when the diver is moving improved transient 

and steady state response. Deliberative approaches are unable to currently predict diver 

behavior and are not used for diver following. 

C. DIVER LEADING 

For diver-leading operations, the THAUS must lead a diver through an obstacle 

field to a goal location. The results for the potential field method and deliberative 

approach are presented. The PID control is not applicable here as there is no obstacle 

avoidance mechanism (as demonstrated Section V.B.1).  

1. Deliberative Planning Applied to Diver Leading 

For this scenario, the THAUS is to lead the diver from an initial location, around an 

obstacle, to a goal location. Figure 36 shows the scenario with the initial position on the left 
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(red circle), obstacle (blue polygon), and goal location on the right (red circle). The path (green) 

generated from RRT* connects the initial to the goal location around the obstacle.  

 
Figure 36.  Diver leading scenario from initial location on left around the obstacle (blue) 

to goal location on right. 

The RRT* algorithm generates a path for the THAUS to follow using the 

temporal and spatial following controllers. The RRT* generation used 1,000 nodes with γ 

equal to 30 and η equal to 10. Figure 37 shows a simulated run with the obstacle in 

several time steps. The upper left plot shows the THAUS in red, offset from the path in 

green. The path moves around the blue obstacle. The diver, in black, is 3.5 meters away 

from the THAUS. The upper right plot shows the diver swimming towards THAUS while 

THAUS uses LOS control to point directly at the path. As the diver swims towards the 

THAUS, the THAUS begins moving towards the path. Once within 0.5 meters of the 

path the THAUS turns back onto the path (left, center) and continues waypoint 
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navigation. The speed of the THAUS continually adjusts to maintain a one meter offset 

from the diver (middle two plots). The THAUS uses the cross track error controller for 

the remainder of the run to track the path and the LOS controller to make course 

corrections). The THAUS continues following the path, leading the diver around the 

obstacle to the goal location (bottom two plots). 

 
Figure 37.  The THAUS leads a diver around an obstacle to a goal location 

Figure 38 shows the relative distance between the diver and the THAUS. At 

steady state, the separation distance remains close to the specified threshold. As the diver 

initially closes in on the vehicle, the distance between the diver and THAUS decreases to 

less than 0.5 meters. This is not a safety concern since the diver is controlling the distance 

to the THAUS and the THAUS is reacting to the diver by moving away. Figure 39 shows 

the cross track error of the THAUS. The THAUS is offset from the path at the start of the 

run to illustrate the two modes of operation in path following. The cross track error is 
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minimal until the THAUS turns towards the next waypoint. The cross track error 

increases as the momentum from the previous track carries the THAUS off the intended 

path. The cross track error controller then reduces this error within five seconds to remain 

on the new track. 

 
Figure 38.  Following distance between diver and THAUS 
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Figure 39.  Cross track error of the THAUS 

2. Potential Field Approach Applied to Diver Leading 

Figure 40 illustrates the potential field method applied to the same scenario. The 

THAUS starts off on the left and moves directly towards the goal on the right (since it is 

a reactive method) but is repelled by the obstacle. Due to the shape of the obstacle, the 

THAUS gets stuck in the local minimum in the potential field and does not reach the goal 

location. The potential field approach is inadequate to maneuver in a generic environment 

with obstacles. 
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Figure 40.  THAUS path using potential field methods. 

3. Discussion 

The potential field method is inadequate to lead the diver around an obstacle to a 

goal location due to the potential for the THAUS to get stuck in a local minima. RRT* 

coupled with spatial and temporal path followers is a viable solution to successfully lead 

a diver around an obstacle to a goal location. 
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VI. CONCLUSIONS  

A. SUMMARY 

Close-quarters operations with AUVs allows for the exploration of novel 

applications, including joint diver-robot operations. However, diver safety is of 

paramount importance when the human and robot must share a workspace. The objective 

in this work is to enable three modes of operations: station-keeping, diver-following, and 

diver-leading. Reactive and deliberative methods are investigated in this work to facilitate 

these modes of operation.  

A simplified, decoupled dynamic model for a hovering-class AUV is developed 

for the SeaBotix vLBV300 platform. The degrees of freedom modeled are in the 

horizontal plane: surge, sway, and yaw. The decoupled models for each degree of 

freedom is developed using step inputs and measuring the resulting output. This gives 

three separate frequency-domain transfer functions, which are combined to yield a 

simplified dynamic model of the vehicle for planar motion. This model is used to develop 

reactive diver avoidance and robot positioning in simulation before applying these 

techniques to the real system.  

Different technical approaches are developed based on the mode of operation of 

the THAUS. For station-keeping, a PID controller and potential field method are used to 

command the vehicle into a specific pose. For diver-following operations, both the PID 

controller and potential field method are investigated to operate in close quarters to a 

virtual diver. Finally the potential field method and RRT* path planning algorithm, 

combined with a cross track error controller, is used to lead a diver around an obstacle 

towards a goal location. 

For station-keeping operations, the PID controller showed better results over the 

potential field method. The potential field had a slower response time. Additionally, 

without the integral control developed for the PID controller, the vehicle’s dead-band and 

any environmental disturbances will prevent the vehicle from reaching the desired pose, 

resulting in a steady-state error.  
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For diver-following, the potential field method outperformed the PID controller. 

The PID controller does not avoid the diver and no mechanism exists to keep the diver 

safe. The PID controller is also susceptible to integral windup, which can cause the 

vehicle to rapidly approach the goal location. The potential field method showed a 

smooth trajectory, navigating to the goal location while avoiding the diver, as desired. 

For diver-leading, the path planning algorithm outperformed the potential field 

method. The potential field method is prone to local minima. This problem requires a 

deliberative approach in complex operating environments. Utilizing the RRT* for path 

planning and the waypoint navigation coupled with the cross-track error controller, the 

vehicle responded to the diver to maintain a specified distance, navigated around 

obstacles, and lead the diver to a goal location. However, application of this approach to 

diver following is challenging since knowledge of the diver’s expected behavior is 

required.  

B. FUTURE WORK 

Based on the results achieved in this work, as well as the limitations identified, 

several areas for future work have been identified. First, a coupled, 6-DOF hydro-

dynamic model of the development platform has recently been developed, using a state-

space representation. Time domain modeling (as opposed to frequency domain analysis, 

as used in this work) provides additional insight into the vehicle dynamics, accounting for 

coupling between channels, and allows for the application of robust control algorithms 

like LQR. The developed modeled utilizes individual thrusters, enabling an additional 

degree of freedom: roll. Finally, the approach is adaptive: if the vehicle dynamics change 

(e.g., THAUS uses a grabber arm to pick up an object), the model and control can adapt 

to account for this change. All of these results facilitate tighter control of the vehicle 

during proximal operations (including operations among divers). The results obtained in 

this research will directly benefit from integration with the new vehicle model.  

Second, reliance on the external motion capture arena allowed for rapid 

generation of initial results, but the size of the test tank proved to be restrictive. One 

solution is to add onboard sensors (e.g., an inertial navigation system and Doppler 
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velocity log) to track the vehicle pose. This in turn allows for the obtained techniques to 

be applied in the real-world, open-ocean environment. The obtained approaches need to 

be exercised in the controlled dive tank and open-ocean to verify the feasibility of the 

approach to navigate among diver, in particular in the presence of environmental 

disturbances.  

For the current work, a virtual diver is assumed, but this is obviously restrictive. 

Ideally, a diver tracking and prediction system, either acoustic or optical, needs to be 

developed to complete this work. The close-quarters operations with divers allow a visual 

recognition system to be used that would normally be infeasible in an underwater 

environment. Depending on ambient lighting and water clarity, an acoustic tracking 

system may work better. This could either be a transmitter on the diver that the vehicle 

will detect, or a reflector worn on the diver that the vehicle will ping and receive the data 

back. Alternatively, an external localization system (e.g., an Ultra-Short Baseline 

acoustic beaconing system) can also track divers in the workspace, but accuracy is 

limited and such an approach requires infrastructure deployment. 

A true deliberative approach will require an accurate predictive model of diver 

motions. Such a behavioral model will allow the robot to reason about current and future 

diver actions are is required to truly integrate the diver assistant into a collaborative 

diver-robot team. 

Finally, both the virtual diver’s and THAUS’ pose are assumed to be known at all 

times. There will be uncertainty associated with the robot and diver locations in addition 

to environmental disturbances. These uncertainties must be explicitly accounted for in 

planning operations. Additional future work entails modeling diver behavior to predict 

their motion into the future. This will allow the addition of deliberative strategies in the 

diver-following mode of operation.  

 

 



 58 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 59 

APPENDIX A 

First Order MATLAB Script 
% first_order.m 
% calculates open loop transfer function of a first order response 
based on 
% the time constant and steady state value 
  
clear all; close all; clc 
  
% Data from velocity response 
load fomodel 
  
  
  
x=measure_exp(:,1); % x measurement from Vicon 
y=measure_exp(:,2); % y measurement from vicon 
time=time-time(1); % resets the initial time to start at zero 
x=x-x(1); % initial x starts at 0 
y=y-y(1); % initial y starts at 0 
pos=sqrt(x.^2+y.^2); % straightline distance from origin 
  
vel=zeros(numel(time),1); % intializes velocity 
vel(2:end,1)=diff(pos)./diff(time); % differentiates position by time 
for velocity 
  
% data before input was received that is eliminated 
a=min(vel);  
[a,b]=find(vel==a); 
time(1:a)=[]; 
vel(1:a)=[]; 
time=time-time(1); 
vel=vel-vel(1); % initial velocity starts at zero 
vel=smooth(vel); % differentiated velocity is smoothed out 
  
ss=mean(vel(time>7)); % steady state value of velocity 
tc_amp=0.63*ss; % time constant amplitude is 63% of steady state value  
tc=interp1(vel,time,tc_amp); %t ime constant is corresponding x value 
of the amplitude 
a=1/tc; % inverse of time constant for transfer function 
  
KpKs=a*ss; % gain value based on steady state amplitude 
Ks=500; % input value of joystick 
Kp=KpKs/Ks; % gain of plant for transfer function 
G=tf(Kp,[1 a]) % transfer function 
  
% plot of smoothed data with step response of transfer function 
figure 
stepplot(Ks*G) 
hold on 
plot(time,vel,'r') 
ylabel('velocity (m/s)') 
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axis([0 time(end) 0 .5]) 
title('First order comparison of model and experimental results')  
legend('model','experimental') 
  

 Second order MATLAB script 
% second_order.m 
% calculates second order open loop transfer function based on natural 
% frequency, peak time, percentage overshoot, and damping ratio 
  
close all; clear all; clc 
  
% Data from position response 
load somodel.mat 
  
y=measure_exp(:,2); % sway position from Vicon 
  
% deleting initial data before control signal 
[a,b]=find(reference_exp(:,2)==0);  
time(a)=[]; 
y(a)=[]; 
time=time-time(1); % initializing time to zero 
y=y-y(1); % setting origin at start 
  
  
  
cfinal=mean(y(time>10)); % steady state value 
percentos=(max(y)-cfinal)*100; % percent overshoot 
zeta=-log(percentos/100)/sqrt(pi^2+log(percentos/100)^2); % damping 
ratio 
Tp=time(y==max(y)); % peak time 
wn=pi/(Tp*sqrt(1-zeta^2)); % natural frequency  
Ge=tf([wn^2],[1 2*zeta*wn wn^2]); % closed loop plant 
G=tf([wn^2],[1 2*zeta*wn 0]) % open loop plant 
  
% comparison of position responses 
figure 
step(Ge) 
hold on 
plot(time,y,'r') 
axis([0 time(end) 0 1.5]) 
ylabel('Position (meters)') 
legend('model','experimental') 
title('Comparison of second order responses') 
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Figure 41.  Simulink diagram of experimental setup to deliver commands to THAUS and 

receive data from Vicon. 
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APPENDIX B 

 
Figure 42.  Simulink block diagram of model plant and controller. 
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Figure 43.  Simulink block diagram of THAUS 

 
Figure 44.  Simulink block diagram of THAUS surge channel 
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Figure 45.  Simulink block diagram of THAUS sway channel 

 
Figure 46.  Simulink block diagram of THAUS yaw channel. The block includes logic to 

have output limited to + or – π. 
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Figure 47.  Simulink block diagram of PID controller. The reference and measured 

signals are both rotated to the body frame before being subtracted for the 
error signal. Each channel is then fed into its own PID controller. 
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Figure 48.  Simulink block diagram of potential controller integrated with station keeping 

 
Figure 49.  Simulink block diagram of diver motion 
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Figure 50.  Total potential is made up of repulsive and attractive potential blocks. 

RRT MATLAB script 
%RRT.m 
% RRT algorithm with one obstacle 
clc; close all; clear; 
  
% vehicle start position 
x_init=10; 
y_init=1; 
  
step_init=.5; % step size 
step_size=step_init; 
n=1000; % number of attempts to expand the tree 
edges=[]; 
path=[]; 
figure() 
hold on 
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% workspace 
xworkspace=[0;0;20;20;0]; 
yworkspace=[0;20;20;0;0]; 
plot(xworkspace,yworkspace) 
  
  
x_obs=[0,0,1,1,0,0,2,2,0]*2+9; 
y_obs=[0,1,1,5,5,6,6,0,0]*2+5; 
  
fill(x_obs,y_obs,'b') 
  
  
q_init=[y_init,x_init]; % tree root is at vehicle position 
plot(q_init(1),q_init(2),'ro') 
q_goal=[18,10]; % q goal position on opposite side of obstacle 
plot(q_goal(1),q_goal(2),'ro') 
  
%% Build RRT 
Tree_init=[q_init]; 
Edge_init=[]; 
Tree_goal=[q_goal]; 
Edge_goal=[]; 
for i=1:n 
    collision=1; 
  
    while collision~=0 % selects a random point not in the obstacle 
        q_rand=[randi(20*n/10)/(n/10),randi(20*n/10)/(n/10)]; 
        collision=sum(inpolygon(q_rand(:,1),q_rand(:,2),x_obs,y_obs)); 
    end 
     
    % Extend RRT 
     
    [IDX,D]=knnsearch(Tree_init(:,1:2),q_rand); % finds closest point 
on tree 
    q_near=Tree_init(IDX,1:2); 
    angle=atan2d([q_rand(2)-q_near(2)],[q_rand(1)-q_near(1)]); % grows 
branch out towards q_rand 
    q_new=q_near; 
     
    while sum(q_new~=q_rand)~=0 % grow branch until it reaches q_rand 
       q_old=q_new; 
       d=pdist([q_new;q_rand]); 
        if step_size>d 
            q_new=q_rand;% remaining distance to goal 
        else 
        q_new=q_new+step_size*[cosd(angle),sind(angle)]; 
        end 
    if 
sum(polyxpoly([q_old(1),q_new(1)],[q_old(2),q_new(2)],x_obs,y_obs))~=0 
% if collision with obstacle break out of while loop 
         break 
    end 
    Tree_init=[Tree_init;q_new]; % add q_new to tree 
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    Edge_init=[Edge_init;q_old,q_new]; % add branch to edge 
   plot([q_new(1),q_old(1)],[q_new(2),q_old(2)],'k'); 
    end 
   %% Connect q_goal 
    [IDX,D_goal]=knnsearch(Tree_init(:,1:2),q_goal); 
    if min(D_goal)<20 % threshold value to try to attempt goal to 
branch, follows same architecture as above 
        q_near=Tree_init(IDX,1:2); 
        angle=atan2d([q_goal(2)-q_near(2)],[q_goal(1)-q_near(1)]); 
        q_new=q_near; 
        while sum(q_new~=q_goal)~=0 
            q_old=q_new; 
            d=pdist([q_new;q_goal]); 
            if step_size>d 
                q_new=q_goal; 
            else 
                q_new=q_new+step_size*[cosd(angle),sind(angle)]; 
            end 
            if 
sum(polyxpoly([q_old(1),q_new(1)],[q_old(2),q_new(2)],x_obs,y_obs))~=0 
                break 
            end 
            Tree_init=[Tree_init;q_new]; 
            Edge_init=[Edge_init;q_old,q_new]; 
            plot([q_new(1),q_old(1)],[q_new(2),q_old(2)],'k'); 
        end 
    end 
    if q_new==q_goal % break out of for loop if goal is connected 
        break 
    end 
       
end 
  
%% path 
path=[]; 
q=q_goal; 
while sum(q~=q_init)~=0 % work backwards through branches to go from 
goal to initial location 
   
[A,B]=ismember(q,Edge_init(:,3:4),'rows'); 
parent=Edge_init(B,1:2); 
path=[path;q]; 
q=parent; 
end 
path=[path;q]; 
plot(path(:,1),path(:,2),'r') 
 

RRT* MATLAB script 
% rrt_star.m 
% conducts RRT star algorithm to find optimal path 
clc; close all; clear; 
  
% vehicle start location 
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x_init=10;  
y_init=1; 
  
step_init=1; % step size 
step_size=step_init; 
n=500; % number of attempts to expand the tree 
pathplot=[]; 
min_path=1000; 
edges=[]; 
path=[]; 
Radius=40; 
figure() 
hold on 
  
% workspace 
xworkspace=[0;0;20;20;0]; 
yworkspace=[0;20;20;0;0]; 
plot(xworkspace,yworkspace) 
  
% obstacle 
x_obs=[0,0,1,1,0,0,2,2,0]*2+9; 
y_obs=[0,1,1,5,5,6,6,0,0]*2+5; 
fill(x_obs,y_obs,'b') 
%% 
  
% initial and goal 
  
q_init=[y_init,x_init]; 
plot(q_init(1),q_init(2),'ro') 
q_goal=[18,10]; 
plot(q_goal(1),q_goal(2),'ro') 
% Build RRT 
Tree_init=[q_init]; 
Edge_init=[q_init,q_init,0]; 
Tree_goal=[q_goal]; 
Edge_goal=[]; 
for i=1:n 
     
  
    collision=1; 
    % Select a random collision free point 
    while collision~=0 
    q_rand=[randi(20*n/10)/(n/10),randi(20*n/10)/(n/10)]; 
    collision=sum(inpolygon(q_rand(:,1),q_rand(:,2),x_obs,y_obs)); 
    end 
     
    % Extend RRT 
    [IDX,D]=rangesearch(Edge_init(:,3:4),q_rand,Radius); 
    IDX=cell2mat(IDX); 
    D=cell2mat(D); 
    q_near=Edge_init(IDX(1),3:4); 
    angle=atan2d([q_rand(2)-q_near(2)],[q_rand(1)-q_near(1)]); 
    q_new=q_near; 
    h=[]; 
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    counter=1; 
    step_size=step_init; 
    while sum(q_new~=q_rand)~=0 
       
        q_old=q_new; 
        [A,B]=ismember(q_new,Edge_init(:,3:4),'rows'); 
        d=pdist([q_new;q_rand]); 
        if step_size>d 
            q_new=q_rand; 
            step_size=d; 
        else 
            q_new=q_new+step_size*[cosd(angle),sind(angle)]; 
        end 
        if 
sum(polyxpoly([q_old(1),q_new(1)],[q_old(2),q_new(2)],x_obs,y_obs))~=0 
            break 
        else 
            Tree_init=[Tree_init;q_new]; 
            Edge_init=[Edge_init;q_old,q_new,step_size+Edge_init(B,5)]; 
            counter=counter+1; 
        end 
    end 
  
  
%% rewiring of tree 
[IDX,D]=rangesearch(Edge_init(:,3:4),q_new,Radius); 
IDX=cell2mat(IDX); 
D=cell2mat(D); 
min_cost=Edge_init(end,5); % current cost is connected edge, search to 
find a shorter one 
change=0; 
    for j=1:numel(IDX) 
        cost=D(j)+Edge_init(IDX(j),5); 
        if cost<min_cost % search for shorter collision free path 
            if 
sum(polyxpoly([q_new(1),Edge_init(IDX(j),3)],[q_new(2),Edge_init(IDX(j)
,4)],x_obs,y_obs))==0 
                change=1; 
                row=IDX(j); 
                min_cost=cost; 
            end 
        end 
         
    end 
    if change==1 
    Edge_init=[Edge_init;Edge_init(row,3:4),q_new,min_cost]; 
        if counter>1 % delete old branches 
            Edge_init((end-(counter-1)):end-1,:)=[]; 
            counter=1; 
        end 
    end 
     
end 
 %% q_goal star 
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[IDX,D]=rangesearch(Edge_init(:,3:4),q_goal,Radius); 
IDX=cell2mat(IDX); 
D=cell2mat(D); 
change=0; 
for j=1:numel(IDX) % searches through edges to find minimum cost path 
    cost=D(j)+Edge_init(IDX(j),5); 
    if cost<min_path 
        if 
sum(polyxpoly([q_goal(1),Edge_init(IDX(j),3)],[q_goal(2),Edge_init(IDX(
j),4)],x_obs,y_obs))==0 
            change=1; 
            row=IDX(j); 
            min_path=cost; 
        end 
    end 
end   
if change==1 
    if Edge_init(row,3:4)~=q_goal 
        Edge_init=[Edge_init;Edge_init(row,3:4),q_goal,cost]; 
    end 
    path=[]; 
    q=q_goal; 
  
    while sum(q~=q_init)~=0 % searches through parents to make path 
        [A,B]=ismember(q,Edge_init(:,3:4),'rows'); 
        parent=Edge_init(B,1:2); 
        d=pdist([parent;q]); 
        path=[path;q,d]; 
        q=parent; 
    end 
    d=pdist([parent;q]); 
    path=[path;q,d]; 
    pathplot=plot(path(:,1),path(:,2),'g','LineWidth',2); 
    counter=0; 
    change=0; 
  
end 
  
% waypoint paths 
x_path=flipud(path(:,2)); 
y_path=flipud(path(:,1)); 
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Figure 51.  Simulink diagram of RRT algorithm 

MATLAB script for waypoint following 
function [d_div_ROV,xte_cont,psi_err,stop] = 
fcn(waypoint,vehicle,diver) 
%#codegen 
x=vehicle(1); 
y=vehicle(2); 
psi=vehicle(3); 
persistent i change  
rho=.1; % watch circle radius (m) 
if isempty(i) 
    i=2; 
    change=0; 
end 
  
num_waypoints=size(waypoint); % determine number of waypoints 
num_waypoints=num_waypoints(1); 
   
  
  
distance_sq=(waypoint(i,1)-x)^2+(waypoint(i,2)-y)^2; %squared distance 
psi_track=-atan2(waypoint(i,1)-waypoint(i-1,1),(waypoint(i,2)-
waypoint(i-1,2)))+pi/2; % track angle 
Li=sqrt((waypoint(i,1)-waypoint(i-1,1))^2+(waypoint(i,2)-waypoint(i-
1,2))^2); % distance between waypoints 
psi_CTE=psi-psi_track+beta; % cross track error angle 
xtilde=(waypoint(i,1)-x); % difference between current position and 
next waypoint in x 
ytilde=(waypoint(i,2)-y); % difference between current position and 
next waypoint in y 
S=(xtilde*(waypoint(i,1)-waypoint(i-1,1))+ytilde*waypoint(i,2)-
waypoint(i-1,2))/Li^2; % track line 
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del_p=atan2(waypoint(i,1)-waypoint(i-1,1),waypoint(i,2)-waypoint(i-
1,2))-atan2(xtilde,ytilde); % angle between line of sight and track 
line 
xte=S*Li*sin(del_p); 
xte_cont=xte;% cross track error 
psi_des=-atan2((waypoint(i,1)-x),(waypoint(i,2)-y))+pi/2; % desired 
heading 
% determines side of track vehicle is on 
if xte>0 
LOS=psi_track+pi/2; 
else 
    LOS=psi_track-pi/2; 
end 
if abs(xte)>1||change==1 % performs LOS control 
psi_des=LOS; 
xte_cont=0; 
change=1; 
end 
if abs(xte)<0.5&&change==1 
change=0; 
xte_cont=xte; 
end 
% angle goes from -pi to +pi 
if psi_des>pi 
    psi_des=psi_des-2*pi; 
elseif psi_des<-pi 
    psi_des=psi_des+2*pi; 
end      
  psi_err=psi-psi_des;   
if psi_err>pi 
    psi_err=psi_err-2*pi; 
elseif psi_err<-pi 
    psi_err=psi_err+2*pi; 
end        
   
if distance_sq<=rho^2 
    i=i+1; % next waypoint 
end 
d_div_ROV=sqrt((diver(1)-vehicle(1))^2+(diver(2)-vehicle(2))^2); 
  
% goal reached 
if i==num_waypoints+1 
stop=1; 
i=i-1; 
end    
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